ABSTRACT

Aeolian sand is a kind of natural material with abundant reserves and a low price. Many scholars have conducted extensive studies on the engineering applications of aeolian sand. This paper addresses the seismic damage behaviour of aeolian sand concrete columns to promote the application of aeolian sand in frame structures. A total of 5 aeolian sand concrete column specimens with different reinforcements were studied using cyclic loading tests. The failure modes, stiffness degradation, bearing capacity, hysteresis peculiarity, ductility, and energy consumption of the specimens were analysed and compared. Then, applicable damage models of the specimens were proposed. The study results prove that the seismic damage behaviour of the specimens increases with the increase of longitudinal reinforcement percentage and with the transverse steel ratio when the replacement percentage of aeolian sand is constant. Additionally, the damage model which is revised in this paper agrees well with the test results. It can be used to assess the degree of damage to the aeolian sand concrete columns.